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Abstract
The Josephson current through T-shaped double quantum dots (TDQD) has been investigated
theoretically using the non-equilibrium Green’s function method. Hybridization of energy
levels of the central quantum dot (QD) and side QD results in the renormalization of Andreev
bound states, which dominates the Josephson current. Consequently, Josephson critical current
can be modulated to interference construction and destruction by adjusting the energy levels of
two QDs ε1, ε2, and interdot coupling tc. In detail, when ε1ε2 = t2

c is fulfilled, interference
construction occurs and when ε2 = 0, interference destruction happens. These results are
similar to the interference behavior of linear conductance in normal TDQD devices. In addition,
Josephson critical current also shows Fano characteristics with variation of ε2 and the resonance
line shape is determined by ε1. Finally, the Josephson current has a symmetric relation of
I (ε1, ε2) = I (−ε1,−ε2) due to electron–hole symmetry.

1. Introduction

Owing to advances in nanotechnology, the interference of the
transport of phase coherent electrons in mesoscopic devices
has been widely researched in recent years [1–3]. It provides
detectable quantum states within devices which facilitate novel
fabrication of quantum apparatus. The Aharonov–Bohm (AB)
interferometer, a typical interferometer, is more controllable if
a quantum dot (QD) is embedded in one arm or each arm. An
AB interferometer with two QDs inserted in two arms is useful
for detecting electron interference and possible realization of
two-electron spin entanglement [4]. In the situation of just
one QD in one arm of an AB interferometer, the Fano effect,
first proposed in atomic physics [5], can be observed and
modulated by changing magnetic flux � through the ring or
the energy level of the QD εd . The Fano effect arises from
the interference between a continuum energy spectrum and
discrete energy states. It shows a typical Fano resonance of
transmission probability T (E) as a function of the discrete
energy level εd [6, 7]. Transmission probability is generally
of the type T (E) ∝ (ε+q)2

ε2+1 , in which ε = E−εd
�

and � is
the coupling strength between QD and the leads. The Fano
parameter q is generally a complex number which counts the
characteristics of the corresponding model, and it determines
the line shape of the resonance. What is more, the Fano effect

in mesoscopic devices has been realized in experiments [8, 9]
and has evoked other related topics such as the Kondo–Fano
effect [10].

Similar to the Fano model of a QD in an AB
interferometer, a QD with another QD side couple to it (as
shown in figure 1), called the T-shaped double QD (TDQD)
model, is another prototype of the Fano model. In this
model, compared with the side QD which is not connected
directly to the leads, the spectrum of electrons in the central
QD connected to a source and a drain act as the continuum
energy spectrum. Interference occurs by electron transport
through two paths, one is tunneling through the central QD
and the other is through the central QD and then with extra
scattering by the side QD. The energy level of the side QD
plays the role of a Fano resonance shape modulator, because
an extra phase �QD emerges when the electron is elastically
scattered by the side QD [11]. �QD is zero when the
energy level of the side QD ε2 = 0 and is π/2 (−π/2)
when ε2 � 0 (ε2 � 0). So transport enhancement and
suppression can be realized by adjusting the QDs’ levels.
Electron transport through the normal(N)-TDQD-N model has
been widely researched. Güçlü and coworkers studied the
TDQD when the side QD is a Kondo impurity and found
suppression of the conductance [12]. Wu et al focused on the
TDQD consisting of a central Kondo dot and a side coupled
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Figure 1. Schematic diagram for the TDQD system. QD1 is
connected to two superconductor leads with coupling parameter tL

and tR . QD2 is side coupled to QD1 with coupling parameter tc.

noninteracting QD, and they found that linear conductance
of Kondo unitary is broken down by the side QD [13, 14].
Cornaglia and Grempel showed that when both QDs are
in the Kondo regime, conductance is controlled by interdot
coupling and the Kondo temperature of QDs [15]. Tanamoto
and Nishi researched the modulation of the Fano dip in a
similar model with a side coupled QD molecular model [16].
Previous works all concentrate on the TDQD device coupled
to normal contacts, while Josephson current through TDQD
has not been investigated yet. When a TDQD is embedded
between two superconductor (S) leads, the Cooper pairs could
tunnel through the TDQD device even in the zero bias case
because of the superconductor phase difference of the two
leads. Interference of the Cooper pairs passing through the
two paths should also happen. The interference construction
and destruction, Fano effect of the Cooper pair transport, as
well the characteristics of the Andreev bound states are the
motivations behind this work.

In this paper we consider a TDQD structure connected
to two superconductor leads. By using the non-equilibrium
Green’s function method, the Josephson current expression
and Andreev bound states are obtained. The Andreev bound
states are strongly affected by the side QD due to hybridization
of two QD levels ε1 and ε2. While in weak coupling to
the superconductor leads, the positions of the Andreev bound
states are close to the molecular levels of isolated DQDs. The
critical Josephson current Ic can be modulated to interference
construction and destruction due to the interference of Cooper
pair transport through two paths. In detail, when ε2 = 0,
Ic is suppressed and when relation t2

c = ε1ε2 is fulfilled,
interference construction of Josephson current occurs. Fano
type resonance of Ic is observed by adjusting ε2 with the line
shape depending on ε1. When ε1 �= 0, typical asymmetric
Fano resonance of Ic–ε2 is found, whereas when ε1 = 0, Ic–
ε2 is symmetric. Finally we found that the Josephson current
has the property, I (ε1, ε2) = I (−ε1,−ε2), which includes the
electron–hole symmetry.

The rest of the paper is organized as follows. In
section 2, the Hamiltonian and Josephson current expressions
are presented. In section 3, we show our main numerical results
of the Josephson current–superconducting phase relation,
the Andreev bound states phase relation, the interference
construction and destruction of critical current related to QD
levels, and the Fano characteristics of the critical current.
Finally a brief conclusion is given in section 4.

2. Model and formulations

We consider a TDQD structure connected to two Bardeen–
Cooper–Schrieffer (BCS) superconductor leads as shown in
figure 1. QD1 is connected to both superconductor leads
with coupling parameters tL and tR respectively. QD2 is side
coupled to QD1 with interdot coupling parameter tc. The
Hamiltonian of the system can be written as

H =
∑

α=L ,R

Hα +
∑

i=1,2

Hi + Ht, (1)

where Hα and Hi are the Hamiltonian of the αth
superconductor lead and the i th QD, respectively. Ht is
the tunneling term, including the coupling of QD1 to two
superconductor leads and coupling between QD1 and QD2.
Terms in equation (1) are expressed as:

Hα =
∑

kσ

εkC†
kσ,αCkσ,α

+
∑

k


(Ck↓,αC−k↑,α + C†
−k↑,αC†

k↓,α )

Hi =
∑

σ

εi d
†
iσ diσ

Ht =
∑

k,σ,α

(tαe
iθα
2 C†

kσ,αd1σ + tαe− iθα
2 d†

1σ Ckσ,α)

+ tc(d
†
1σ d2σ + d†

2σ d1σ ), (2)

where 
 and θα are the superconductor energy gap and phase.
Here we have taken a unitary transformation as [17], so the
superconductor phase θα emerges in the tunneling Hamiltonian
Ht in equation (2). We consider single level QDs, and εi

is the energy level of the i th QD. Here the electron–electron
interaction in the QDs is neglected, because we consider the
large QD. In fact, if the temperature is higher than the Kondo
temperature, the electron–electron interaction is only to widen
the space of the levels, and the results are qualitatively the
same.

The current through the αth lead is calculated from
the evolution of the electron number operator Nα =∑

kσ C†
kσαCkσα [18, 19],

Iα = −e〈Ṅ〉
= 4e

h̄
Re

∫
dE

2π
tαe

iθα
2 G<

1α,11(E) (3)

G<
1α(E) is the Fourier transformation of G<

1α(t − t ′), and

G<
1α(t −t ′) ≡ i

∑

k

(
〈C†

k↑,α (t ′)d1↑(t)〉 〈C−k↓,α (t ′)d1↑(t)〉
〈C†

k↑,α (t ′)d†
1↓(t)〉 〈C−k↓,α (t ′)d†

1↓(t)〉

)

under the Nambu representation.
We consider here the dc Josephson effect, thus G<

1α(E)

can be simplified by the fluctuation-dissipation theorem that
G<

1α = − f (E)(Gr
1α(E) − Ga

1α(E)) and f (E) is the Fermi–
Dirac distribution and Gr,a

1α (E) are the retarded and advanced
Green’s functions.

By using Dyson’s equation, the retarded Green’s function
Gr

1α(E) can be expressed as Gr
1α = Gr

1t∗αgr
α , and the

Green’s function Gr
1 of QD1 is Gr

1 = (g−1
1 − Σr )−1.

Σr = t∗L gr
L tL + t∗R gr

RtR + t∗c gr
2tc is the retarded self-energy

2
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Figure 2. Left panel: Josephson current I versus superconductor phase θ for various parameters, (a) tc = 0, � = 0.1 and ε1 = 0;
(c) ε1 = ε2 = 0 and � = 0.1 for different QD coupling tc; (e) ε1 = 0, � = t2

c = 0.1 for different ε2 values; (g) � = t2
c = 0.1 and ε1, ε2

satisfies ε1ε2 = t2
c . Right panel: Andreev bound states versus superconductor phase θ with the parameters corresponding to the left panel.

coupled to superconductor leads and QD2. Here gr
α(E)/gr

i (E)

is the Green’s function of the isolated superconductor
lead or the Green’s function of the isolated i th QD,
and tα/tc is the tunneling matrix corresponding to tα/tc
in the Nambu representation. The expression of gr

α(E)

is [20] gr
α(E) = −πρ(E)

(
β(E) β0(E)

β0(E) β(E)

)
and gr

i (E) =( 1/(E − εi + iη) 0
0 1/(E + εi + iη)

)
, where ρ(E) is the normal density

of states of the superconductor lead, β0(E) = β
/E , and
β(E) = E/

√

2 − E2 while |E | < 
 and β(E) =

i|E |/√E2 − 
2 while |E | > 
. Tunneling matrices are tα =
tα

( eiθα /2 0
0 −e−iθα /2

)
and tc = tc

( 1 0
0 −1

)
. For convenience we take

the symmetric barriers with tL = tR and θL = −θR = θ/2.
Finally we have the reduced Josephson current expression

Iα = −2e

h̄

∫
dE

2π
f (E)

β2
0�

2 sin θ

Im{B} , (4)

where B = (E − Et2
c

E2−ε2
1
+�β)2 − (ε1 + ε2t2

c

E2−ε2
2
)2 −�2β2

0 cos2 θ
2 ,

and the linewidth function � ≡ 2πρt2
α describes the coupling

strength of QD1 to the superconductor leads, which is assumed
independent of the energy E .

Two parts contribute to the Josephson current, the
continuous part Icon arises from electrons of energy E outside
the superconducting gap 
 and the discrete part Idis from
electrons of energy within the gap 
. The continuous part Icon

is obtained directly by the integral in equation (4), while the
discrete part is approached by solving poles of factor B which
are the Andreev bound states. Affected by the QD2, instead
of one pair of bound states ±E0 in a S–QD–S junction, there
are two pairs of Andreev bound states E±

i=1,2 with E+
i = −E−

i
and they all make contributions to the current. Besides, as in
the S–QD–S Josephson junction, the current Idis contributed

by the Andreev bound states is usually much larger than the
continuous part.

3. Results and discussion

In this section, we will present the numerical results on
Josephson current–superconducting phase relations and the
corresponding Andreev bound states–phase relations, the
interference construction and destruction of critical current, as
well as the Fano characteristics of critical current.

In figure 2 we show the current phase relation (I –θ )
for different parameters and the corresponding Andreev bound
states’ phase relation (E±

i –θ ). These two relations are

connected by Idis = − 2e
h

∑
i,± f (E±

i )
∂ E±

i
∂θ

[21, 22]. Because
the bound states within the gap are paired with energy of
opposite signs, we only show those in half-interval [−
, 0].
First, by decoupling QD2, the usual S–QD–S junction is
displayed in figure 2(a). When ε1 = 0, the current shows
a discontinuous jump at θ = π and meanwhile the Andreev
bound states ±E0 degenerate at E = 0 [23–25]. When
QD2 coupling is considered, I –θ is usually a sinuous line
shape and the current is suppressed as tc is increased (see
figure 2(c)). In this case, the Andreev bound states depart from
the Fermi energy EF = 0 which breaks down the resonance and
suppresses the current (see figure 2(d)). In figure 2(e), current
for different ε2 values is shown. The current is enhanced as
ε2 is away from the Fermi energy which illustrates that in
ε2 = 0 current is suppressed. Andreev bound states cross
when ε2 = 0 at θ = π and they depart from each other as
ε2 is away from the Fermi level. Finally in figure 2(g), the
current jump at θ = π appears when the relation ε1ε2 = t2

c is
fulfilled. Corresponding Andreev bound states in this condition
display the same behavior as in figure 1(b) where one pair of

3
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Figure 3. Critical current versus ε1 for different interdot coupling tc.

bound states degenerates at E = 0 and the current carried by
the bound states changes its sign abruptly [26]. This condition
can be analytically obtained from the expression B . Supposing
Andreev bound states degenerate at E = 0, by solving B(E =
0) = 0, we easily have

ε1ε2 = t2
c , θ = π. (5)

This means, if these two conditions hold, that the degeneration
of one pair of bound states at the Fermi level will occur
and consequently, a Josephson current jump at θ = π

will occur as well. Besides, equation (5) is the condition
for maximum critical current, which will be detailed in the
following discussions.

Finally in this I –θ discussion, we note that in a N–TDQD–
N, the realization of a linear conductance maximum is exactly
equation (5). In fact, the values of Andreev bound states in
our model when weakly coupled to S leads are very close
to the molecular levels of the isolated QD molecule ε± =
[(ε1 + ε2) ± √

(ε1 − ε2)2 + 4t2
c ]/2 (not shown here) which

is also the resonance center of linear conductance in the N–
TDQD–N model [13].

Next, we focus on the critical current through the TDQD.
The critical current Ic is obtained by choosing the maximum
Josephson current in a 2π period of superconductor phase
θ . In figure 3 we plot Ic as an energy level of QD1 ε1

for different interdot coupling tc at ε2 = 0. Ic shows a
symmetric peak at ε1 = 0, and this peak is strongly suppressed
when tc is introduced with even tiny values. This result can
be understood from the interference of two paths. When ε1

aligns the Fermi level, electrons are easy to transport through
the system. However when QD2 is connected with its level
ε2 = EF = 0, electrons being transported through QD1 tend
to tunneling into QD2. Then interference destruction between
two paths occurs, and the current is decreased. So, while level
ε2 closes to the Fermi level, QD2 acts as an impurity to scatter
the incident electron or Cooper pair. This result resembles the
transport through an N–TDQD–N device.

In figure 4, we plot the Ic–ε1 relation for different ε2. Here
we also show a graph of tc = 0 for comparison. For given tc,
Ic shows a peak at ε1 = 0 when ε2 = 0 (see the inset of
figure 4). As ε2 is moving off the Fermi level, interference
construction begins to function. Consequently an extra peak

Figure 4. Critical current versus ε1 for different ε2 values with
t2
c = � = 0.1. The curve for tc = 0 is also shown for comparison.

Inset: enlarged figure of critical current for the curves with
ε2 = 0,±0.05 and ±0.1.

Figure 5. Critical current versus ε2 for different interdot coupling tc

for nonzero ε1. Other parameters are ε1 = 0.2 and � = 0.1.

is shown and the original peak at ε1 = 0 becomes obscure.
The position of the extra peak is determined by equation (5).
When equation (5) is satisfied, one pair of Andreev bound
states aligns to the Fermi level which facilitates the transport.
With ε2 moving further off the Fermi level, or in other words,
when QD2 is gradually isolated from QD1, the curve of Ic–ε1

tends to that of the S–QD–S junction (i.e. the tc = 0 case).
Now we focus on the Fano resonance characteristics of

critical current. In figure 5 we plot a graph of Ic–ε2 for different
interdot coupling. Ic–ε2 shows a typical Fano asymmetric line
shape when ε1 �= 0. There is an obvious Fano valley at ε2 = 0
and a peak depending on equation (5). With enhanced tc, the
interference destruction and construction are enhanced even
more. The Fano valley is still at ε2 = 0 with smaller critical
current, but the peak is moved away with larger magnitude of
the critical current.

Finally, we also found that the Fano line shape of critical
Josephson current can be modulated by the QD1 level, which
is like the Fano effect in an AB interferometer with its Fano
line shape modulated by magnetic flux. In figure 6 we plot Ic–
ε2 for different ε1 values. The curves show a valley at ε2 = 0
and a peak at ε2 = t2

c /ε1. In particular, with the change of ε1,

4
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Figure 6. Critical current versus ε2 for different ε1. Other parameters
are t2

c = 0.1 and � = 0.1.

the Fano peak can be modulated and the peak position can vary
from the right side with ε2 > 0 to the left side with ε2 < 0.
In addition, a relation Ic(ε1, ε2) = Ic(−ε1,−ε2) is found
from figure 6, which reflects the basic physics of electron–
hole symmetry. In fact, by taking the transform di to d̃†

i and
simultaneously setting the parameters (ε1, ε2) to (−ε1,−ε2),
the Hamiltonian H in formula (1) is invariable. So the
Josephson current has the relation I (ε1, ε2) = I (−ε1,−ε2).

4. Summary

The Josephson current through a T-shaped double quantum
dot device has been investigated. Josephson critical current
can be modulated by energy levels of two QDs ε1 and ε2.
The interference construction occurs when interdot coupling
tc and energy levels fulfil ε1ε2 = t2

c , and the interference
destruction emerges while ε2 = 0. Critical current versus the
side QD level ε2 shows Fano characteristics with resonance
shape determined by the central QD ε1. In addition, due to
electron–hole symmetry, the Josephson current has the relation
I (ε1, ε2) = I (−ε1,−ε2).
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